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Abstract

Measuring comodules are defined and shown to provide a useful generalization of the set of maps
between modules with a broad range of applications. Three applications are described. Connections
on bundles are described in terms of measuring comodules, enabling curvature to be defined under
general algebraic circumstances. Loop algebras are realized via a short exact sequence of measuring
comodules, with the central extension given by the curvature. Finally dual comodules provide a
method of dualizing representations, which when applied to representations of loop algebras yield
positive energy representations, and when applied to representations of totally disconnected groups
leads to the smooth dual. © 2000 Published by Elsevier Science B.V.
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1. Introduction

For some time measuring coalgebras have been employed as sets of generalized maps
between algebras [1]. The purpose of this paper is to introduce measuring comodules which
provide a set of generalized module maps from a modiever an algebra to a module
N over a different algebr&.

The categorical implication of this construction is presented in [4]. This paper presents a
more practical approach not only in the construction of categorical interest, but it also has
wide range of potential applications, three of which are described here.

The first application describes connections on bundles. A connection is that construction
which is required to describe covariant differentiation of a section of a vector bundle. As
such it is amenable to algebraic description, and indeed gives an example of a measuring
comodule. The curvature of a connection can likewise be described as an element of a
measuring comodule.

The second application generalizes an alternative construction of the universal enveloping
algebra of a Lie algebra using measuring coalgebras. That construction proceeds as follows.
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Given a representation of a Lie algehtaas derivations of an algebr4, the universal
enveloping algebréJL arises as the subcoalgebra-subalgebra of the universal measuring
coalgebraP (A, A) generated by.. In an earlier paper quantum group-like objects were
shown to arise by considering subcalgebra-subalgebraétf A) generated by certain sets

of difference operators [2]. Here, similar sets of difference operators are used to generate
subcomodule-subalgebras of the universal measuring comgtig M) for a suitable

A moduleM. The resulting algebras are closely related to loop algebras and their central
extensions. The cocycle defining the central extension arises as the trace of a curvature.

The last application concerns the dual comodule cdanoduleM, Q (M, C), whereA
is an algebra ove€. This comodule itself becomes anmodule with a strong finiteness
property: every element is contained in a finite dimensieghalubmodule. Two examples
are considered. In the first cag# is a representation of a totally disconnected group
e.g., an algebraic group over tpeadic numbers. The construction of interest concerns the
dual comodule ofVf considered as a module for the group algebra= CK, whereK
is a compact open subgroup Gf The resulting dual comodule turns out to be not only a
representation ok, but of the whole ofG. It is closely related to the smooth dual.

In the second exampl@/ is a levelk representation of a loop algebkdx, x~1] (where
L is a finite dimensional semi-simple Lie algebra). The dual comodul®foonsidered as
anA = UL[x] module is not only arL.[x] module but a levet representation af[x, x ~1].
Moreover it contains as a functorially identifiable submodule a positive energy piece. When
M is positive energy, this piece is the dual positive energy lexepresentation df[x, x ~1].

This paper is organised as follows. Section 2 describes measuring coalgebras and comod-
ules. While essentially the constructions are the same as those described in [4], here they are
presented in a simplified algebraic context rather than the more general categorical setting.
Connections are described in Section 3, the association with loop algebras in Section 4, and
finally the two applications of dual comodules in Section 5.

2. Measuring coalgebras and measuring comodules

Although measuring coalgebras (and dual coalgebras in particular) have been around for
a long time, | will develop the theory of measuring coalgebras and measuring comodules
in parallel, as the first serves as an accessible model for the second.

Definition 2.1 (Measuring coalgebras). if andB are algebras over a fiekd ameasuring
coalgebrais a coalgebra overk with comultiplication

A:C—CQ®C, Ac:ZC(z)@C(l), (1)
(©)
and counitk : C — k together with a linear map, callech@easuring map
f:C — Homg(A, B) 2)

such that
1. ¢c@d) = 3, pc(@pca (@),
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2. ¢c(1p) = €(0)1p
fora,a’in A, 14, 1, the appropriate identity elements. The ngais said to measure.
Statements (1) and (2) are equivalent to the statement that the transpose map

¢ : A — Homy(C, B) 3)

is an algebra homomorphism, where the multiplication in 6 B) is given by

pev(e) = ulc@)vica) 4)
(c)
with identity
1(c) = €(c)1p. ()

The following proposition summarizes results about measuring coalgebras described in [4].

Proposition 2.2.

1. Givenalgebrag\, B, there is a category of measuring coalgebéasA, B) whose objects
are measuring coalgebrag’, ¢) and whose maps: (C, ¢) — (C’, ¢’) are coalgebra
mapsr : C — C’ such that the following diagram commutes.

o Homy(A. B)
c’ /

2. The subcategory of finite dimensional measuring coalgebras is der3@dinB). Es-
sentially, every measuring coalgebra is a limit of finite dimensional subcoalgéioras
a discussion of density s§& Chapter 5]).
3. The categonC(A, B) has a final object(P (A, B), ) called the universal measuring
coalgebra
Thus there is a correspondence of sets

Coalgebra map&’, P(A, B)) <> Algebra mapéA, Homy (C, B)) (6)
4. If A;,i =1, 2, 3, are algebras there is a map
m : C(Az, A3) x C(A1, A2) > C(A1, A3z)

In particular, P(A, A) is a bialgebra
5. The universal measuring coalgebPa A, A) is a bialgebra

Proof. Full proofs can be found in [4]. However, as the presentation in [4] is highly cate-
gorical and more general than is necessary here, direct proofs of (2) and (3) are indicated
below.

(2) To establish density it is sufficient to show that every elemesfta coalgebraC is
contained in a finite dimensional subcoalgebta As this result is the essential property
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of coalgebra, the proof from Sweedler [9, p. 46] is repeated her&'LetHom (C, k) be
the dual algebra and consider the actio6bn C given by

dec= ZC/(C(Z))C(]_). )
()

Evidently theC” moduleV generated by is finite dimensional, and
C' — End(V) (8)

is an algebra homomorphism of cofinite dimensional kesnel
Let J* be the subspace @f on whichJ is identically zero. Finally notice that* —
Hom(C’/J, k) is finite dimensional andlis in J+. A subcoalgebra of a measuring coalgebra
is itself a measuring coalgebra (with the restriction of the measuring map), hence the result.
(3) This depends on two categorical properties of coalgebras.
(a) Arbitrary coproducts exist in the category of coalgebras and coalgebra maps.
(b) Coequalizers also exist in this category.
The construction ofP (A, B) proceeds as follows. Consider the collectigd’;, ¢,)} of
finite dimensional measuring coalgebras. Form the copraduc€i,, this is a measuring
coalgebra. Now consider the $p(A, u)} of mapso(x, n) : C, — C,, offinite dimensional
measuring coalgebras. Form the coprodugs ,.)C;., this is also a measuring coalgebra.
There are two maps

o, B UpG,uwCh — LUCy %)

OnC,, a is just the inclusiorC, — U, C;, while 8 is the composition op (A, u) with the
inclusionC,, — U, Cj.

The claim is that the coequalizéx(A, B) has the desired universal property(Ib, ¢)
is a measuring coalgebra, thénis the union of finite dimensional subcoalgebi@s.
Evidently there is a map, : D, — P(A, B) and this map is unique. The uniqueness
of r, guarantees the map: D — P(A, B) given byp(d) = r,(d) if d in D, is well
defined. O

Example 2.3.

1. P(A, B) is intended to generalize the set of algebra homomorphisms fram B,
and so it does. Le€g = kg be the one-dimensional coalgebra witly = ¢ ® g,
€(g) = 1. Thena map : Co — Homk(A, B) measures if and only id(g) is an
algebra homomorphism. Thu¥ A, B) contains all algebra homomorphisms.

2. LetC1 = kg ® ky, g as above, and led\y = g ® y + y ® g, e(y) = 0. Then
¢ . C1 — Homg (A, B) measures if and only b (g) is an algebra homomorphism and
¢ (y) is a derivation with respect #(g). That is,

P () (@d) = ¢(r) (@ (8)@) + ¢(g)@e(y)(a). (10)

3. More generally ifL is a Lie algebra ovek, thenL & Cp can be given the structure of
coalgebra with comultiplicationy = y ® g+ g ®y ande(y) = 0fory in L. Suppose

¢: L@ Co— Homg(A, A) (12)
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is a measuring map such that

for v, y in L. By the universal property aP (A, A), there is a map of measuring coal-
gebras

p:L®Cyo— P(A, A (13)
However,P(A, A) is an algebra, and in fact the following is true.

Proposition 2.4. If the mapg is injective on L, the subalgebra @f(A, A) generated by
the image op is isomorphic to the universal enveloping algebra.UL

The proof follows from the universal property 8 A, A) and facts about bialgebras [2].
In [2] | considered subalgebras #f(A, A) generated by measuring coalgebfa® CK,
whereK isagroupCK has the usual comultiplicatiohk = k®k for k in K, and elements
of L have a slightly skew version of the usual comultiplication for derivations

AE=EQk+k 1QE, (14)

which is characteristic of difference operators. These objects resemble quantum groups. The
construction in Section 4 of this paper uses the same procedure to construct subalgebras of
the universal measuring comodule (defined below), which are related to central extensions
of loop algebras.

Definition 2.5 (Measuring comodules). L&l be anA module and letV be aB module
(all modules and algebras are vector spaces kyevhen it is necessary to emphasize
the algebra over whic and N are modules, writéd M, BN . Let (C, ¢) be a measuring
coalgebrairC (A, B).Recallthat zomoduleverC is a vector space with acomultiplication

A:D—-C®D, A=Y da®do). (15)
()

In addition, | will assume thae ® 1) A = 1. When it is necessary to keep the track of the
coalgebra over whicl® is a comodule, we write D. A k-linear map

¥ 1 D — Homg(M, N) (16)
measuresf
y@m =Y ¢day(@)yd(m). (17)

(d)

The pair(D, v) is called a measuring comodule, afids called a measuring map.
Equivalentlyyr measures if and only if the corresponding transpose map

¥ . M — Homg (D, N) (18)
is a map ofA modules, where tha module structure on HogiD, N) is given by

aeB(d) =Y ¢du(a)Bdo). (19)
(d)
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Again, the results from Hyland and Batchelor [4] are summarized in the following
proposition.

Proposition 2.6.

1. Given a measuring coalgebra C ii(A, B) there is a category D(M, N), whose
objects are measuring comodul@s, v») and whose maps : (D, v) — (D', y’) are
comodule maps : D — D’ such that the following diagram commutes

D— . Hom(M.N)

NS

D

2. The subcategory of D(M, N) whose objects are the finite dimensional measuring co-
modules is a dense subcategoryd@ (M, N).

3. The category- D(M, N) has a final objectc Q (M, N). This has the property that there
is a correspondence

C — —comodule mapg®,c Q(M, N)) <+ A — —module map&y, Hom(D, N))

(20)

4. If M; are modules over algebrag;,i = 1,2,3, and if C C’ are in C(A1, A)),
C (A2, A3), respectivelythen there is a map

cD(Ma, M3) x¢r D(My1, M) ¢ xcryD(M1, M3) (21)

In particular, c Q(M, M) is a comodule algebra fo€ — Hom(A, A) a measuring
coalgebra M is an A module
5.If A= BandM = N,thencQ(M, N) is a comodule algebra

Proof. (2) Again the important step is to show thafifis aC comodule, then eachin D
is contained in a finite dimensional subcomodule.
Define an actiom of C’, the linear dual of” on D via

aed =" a(da)do. (22)
(d)
Choose an elemeatof dp, and letDg = C’ e dp. Evidently Dy is a finite dimensionat”’
module andip = 1 e dg is in Dy.
The full linear dualD’ (of D) is also aC’ module with the action given explicitly by

axd(d) = ada)d(d)). (23)
(d)

The subseDg = {d € D' : d(Do) = O} is a submodule, anB, = D'/ Dy . But(Dy)* is
then a subcomodule @f, andD is contained i Dy )*. Since(Dy )+ includesin(D’/ Dy )’
(D&)l must be a finite dimensional comodule as required. The proofs of (1) and (3) are
identical in format to the corresponding statements for measuring coalgebras. [
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Example 2.7.

1. LetCp = kg as in Example 2.3(1) and suppose thatC — Homg (A, B) measures,
so that¢ (g) is an algebra homomorphism. L&t be the comodule witth = kd and
comultiplicationAd = g ® d. Lety : D — Homg (M, N) be a linear map. Recall that
the pullback ofN, ¢ (g)*N is anA module. Theny measures if and only if

y(d) M — ¢()"N (24)

is a map ofA modules.

2. If A = B and if C contains the measuring comodulg with ¢(g) = 1, the measuring
comodulec Q(M, N) contains the vector spadé of all genuineA module maps from
M to N as follows.

Any vector space, e.gH, is trivially a C comodule with comultiplicatioms =
g®h. Theinclusiony : H — Homg (M, N) is then a measuring map. By the universal
property there is a unique map of measuring comoduled! —¢ Q(M, N). Sincey
is an inclusion, so mugt be.

3. Any algebra can be considered as a module over itself acting by left multiplication. If
C — Hom(A, B) is a measuring coalgebra, by considerihgs a comodule over itself,
C — Hom(A, B) is also a measuring comodule.

4. For an element of an algebra, let:, denote the inner derivation

la(b) = [a, b] = ab— ba. (25)

Let 74 denote the Lie algebra of inner derivationsAfAs in Example 2.3(3), le€ be
the measuring coalgeb@a = I, & Co, C — Homg (A, A). Now put aC comodule
structure or4,

Ala) =gQRa+1,® 1L (26)

Now let M be anA module. With the comodule structure above, the inclusior>

Homy (M, M) sendinga to left multiplication bya gives A, the structure of a mea-
suring comodule. This construction generalizes the observation that for modules over
commutative rings, left multiplication is a module map.

Remark 2.8.

1. Ift:(C, f) — (C’, f)isamap of measuring coalgebras particular, r is a comodule
map so thatc Q(M, N) can be considered as @ comodule. Since is a map of
measuring coalgebragsQ (M, N) is in fact inc-D(M, N), and hence by the universal
property there is a unique mapQ (M, N) —¢ Q(M, N). All universal measuring
comodulesc Q(M, N) thus map top4, ) Q(M, N), which will often be denoted as
Q(M, N).

2. The constructiorQ (M, N) serves as the set of “module maps from an A module M to a
B module N” even when A is not the same as B. The ppljearose from the desire to
put this curiosity into a sound categorical context
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3. Connections

Given an algebral of functions, and a sét of derivations ofA (vector fields), a con-
nection is that which is needed to define covariant differentiation by elementsoof a
moduleM (e.g., sections of a bundle) ovér This is a completely algebraic statement and
as such lends itself to restatement in terms of measuring comodules.

Definition 3.1 (Loose connections). Let be an algebra and I8f be a module oved. Let
C be a measuring coalgebra, andfebe a comodule ovef which is also am module.
A loose connection is a measuring map

V: D — Homg(M, M), (27)
which additionally satisfies the requirement tRabe a map ofA modules in the sense that

V(a&)(m) = aVg(m). (28)

Example 3.2.

1. Connections on a vector bundleet A = C°°(Y), whereY is a smooth manifold and
let V be the Lie algebra of vector fields ahand letC = V @ C1. LetD = V @ A with
the comultiplication

A:D>C®D, AW)=10v+v Q1L veV,
Aad)=1Qa+1,®1, acA. (29)

Notice thatD is anA module. LetE be a vector bundle ovéaf and letl' (Y, E) denote
the smooth sections d overY. ThusM = I'(Y, E) is a module forA. In this setting,
loose connections are precisely Koszul connections (see [8]).

2. Connections onaprinciple bundlged7]). Let Y be amanifold and le® be a principles
bundle overy. Let M = C°°(P). Observe tha€*°(Y) includes inM as those functions
which are constant on the fibres 8f henceM is aC°(Y) module. In addition, the
group algebr& G acts onM via right translation. The action ®G commutes with the
action of C*°(Y).

LetA = C*(Y) ® RG. Let V be the Lie algebra of vector fields ah Observe that
the coalgebr& above becomes a measuring coalgebra with measuring map

¢ : C—>Hom(C*(Y) ® RG, C*(Y) ® RG), ¢ fR@eg=vf®g. (30)

Let D be the comodule of Example 3.2(1). This i€'& (Y) ® RG module with the
trivial action of G on C*°(Y) andV. Also notice thatD containsC as a subcomodule
(with its usual coproduct). A loose connection

V : D — Hom(C®(P), C®°(P)) (31)

in this setting corresponds to a connection on the principle bundle if and only if addi-
tionally V restricted to the subspacedefines a measuring coalgebra

V : C — Hom(C®(P), C*®(P)) (32)



M. Batchelor/Journal of Geometry and Physics 36 (2000) 251-269 259

3.1. Curvature

Curvature can be defined for any measuring comodule equipped with Lie bracket, in
particular for loose connections. Recall that any measuring comoduie, particular,
comes with a map of measuring comodules

p:D— Q(M, M) (33)

Recall thatQ (M, M) is a comodule algebra. Ib contains a subspadé on which a Lie
bracket is given fo€, ¢ in V, we write

QE YY) =pE)pW) —pW)pE) —p(& V] (34)
This map
Q:VRV > 0M,M) (35)

is thecurvatureof the loose connectiowW on V.

Remark 3.3. In all classical cases, the coalgebra C is alwadysp C1, the comodule D is
alwaysV & A, where Vs the Lie algebra of derivations gfeiad one is only interested in the
restriction ofV to V. There is no harm, however, in allowing this greater generality. In the
next section a very different example demonstrates the advantages of being broad minded

This section concludes with a result which is well known for conventional connections.

Proposition 3.4. If V is a set of primitive elements, i.e., with comultiplication
Ax=£(Q®1+1R®E, (36)
thenQ (&, ¢) determines a module map
QEY) M —->M (37)

Proof. Direct calculation (observing th&@ (M, M) is a comodule algebra, i.e., that multi-
plication preserves the comodule structure) shows that

AQE, ) =10 QE, v). (38)
But this is exactly the statement thatg, i) is a module map. O

4. Generalization of universal enveloping algebras using measuring comodules

In Proposition 2.4, the universal enveloping algebra is constructed as a subalgebra of the
universal measuring coalgebra generated by a Lie algebra of derivations. The original Lie
algebra can be identified as the subspace of primitive elements.

This construction can be generalized, replacing primitive elements (derivations) with
elementsE of a measuring coalgebra with the asymmetric comultiplicatidh = F ®



260 M. Batchelor/Journal of Geometry and Physics 36 (2000) 251-269

K + K~ ® E, wherek is an (invertible) group-like element. The algebras generated by
suchE andK resemble quantum groups, and were the subject of [2].

This construction is now generalized again, replacing the universal measuring coalgebra
with the universal measuring comodule. The resulting algebra has, as the analogue of its
Lie algebra of primitive elements, a Lie algebra related to the central extensions of loop
algebras. The central term arises as the trace of the curvature.

Construction4.1. Let A be an algebra and 181 be anA module. LetPy be a subcoalgebra-
subalgebra oP (A, A), and define
Vo={ve QM,M):Ave Ph® Q(M, M)},
V={ve QWM ,M):Ave P(A,A)®1+1Q Q(M, M)+ Po® Q(M, M)}.
(39)

Evidently A is contained inV. The subcomodulé/ is the generalization of primitive
elements referred above. Suppose a “trace”

t:Vo—>C (40)
is given. LetK be the kernel of. Define
Vor ={ve Vy:[K,v] <K}, Vei={veV:[Vo,v] <K} (42)

Observe thaV; is not an algebra, but the Jacobi identity guarantees that it is closed under
Lie bracket.Vy is a subalgebra o (M, M) and hencé/y, is a Lie subalgebra. It is not
hard to check that there is a short exact sequence of Lie algebras

VOr V‘L’ Vr
- — —
K K Vor
Moreover,V, /K is a central extension df; / Vo, .
Suppose now : V. / Vo, — V; is any linear section of the projectiany — V. / Vo,.
The imageuw(V;/ Vo, ) inherits a Lie bracket fron¥; / Vo, : hence the associated curvature

Q,, takes values g, . While the2,, may depend on the sectipgnthe trace of the curvature
does not. In facV; /K is the central extension of; / Vo, with cocyclec defined by

c(v, w) = T( (v, pw)) (43)

for v, w in V;/Vp. Familiar examples arise from looking at particular subspacés of

0—

- 0. (42)

Example 4.2.
1. LetA = M = CJ[x]. Let

Po={p € P(C[x],C) : p(x™) = Oforalmostalh}. (44)

Explicitly Py has basigg;} with comultiplication and measuring map given by

d
ABj =) Be®Bik BB =iy . (45)
k=0
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Define a trace on Vp,

() =Y BiG))). (46)

j=0
To see this well defined, observe that foin Vg

(™) =Y vy (")) (D). (47)
(v)

Thus 8;(v(x™)) = O for greater than the greatest degree of (1), and the sum
definingz is always a finite sum.

This example contains two very well-known examples as Lie subalgebras. First con-
siderC[a—1]. This can be given the structure of a coalgebra with

i—-1

A H=a""®@1+ Z,Bk Qa itk >0, el = 3i0. (48)
k=0

Define a mam : C[a~1] — Hom(C[x], C[x]) via

Xt i4+n>0,

0 otherwise (49)

$la)x" = {
It is routine, if surprising, to verify that this map measures. Nojw, 1] can be
considered as a comodule o@fie 1] @ Po with comultiplication given by

Adl =1®d! (50)

for i > 0, otherwise as above. Clearly the measuring mabove extends to all of
C[a, 1. It is not hard to check that the image Gfa, @] lies in V. The image of
Cla, @~ 1]in V; /K is the familiar central extension of the abelian Lie algebfa, o 1]
with cocycle

c(otk, ozj) =kdi,—j. (51)

. With Py andt as before, lef be the vector space with badig;,i € Z}, and put a
comodule structure off via

AT =T, @1+1QTi+ ) kB @ + 5 @ Ty, (52)
i+k<0

Observe thal’ @ Po @ C[a1] is in fact a coalgebra if the counit dh is defined to be
identically zero. Extending of the previous example via

xith i 4+n>0,

0 otherwise (53)

P(TH(") = {

givesT @& Py @ C[a~1], the structure of a measuring coalgebra, and hence a measuring
comodule. Again the image lies .. The image ofl" in V;/Vp, is isomorphic to the
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Lie algebra of derivations of[x, x 1], and its image inV; /K is the variant of the
Virasoro algebra with cocycle

(T, Ty) = §(m> — m)8y, . (54)

3. Return now to a general algebfa and suppose thatf = A, and suppose also that
is given so thatk, V; and Vp, are as described in Construction 4.1. ILebe a finite
dimensional (semi-simple) Lie algebra, which is faithfully represente@ byL —
End(W). Let M(W) = A ® W. Then the identification of Hoid7 (W), M (W)) with
Hom(A, A) ® Hom(W, W) provides a map

¢dRp:V®L— HomM(W), M(W)) (55)

which measures. Moreover, ® L, is closed under Lie bracket, asWis ® L.

If « is the Killing form onL thent ® « is well defined oo ® L, andr ® «([V; ®
L, Vo, ® L]) = 0. LetK (L) be the kernel of ® «. There is then a short exact sequence
of Lie algebras

Vor ® L Vi®L V:®L
— — —
K (L) K(L) Vor ® L

(56)

The Lie algebrd/; ® L /K (L) is the central extension of the loop algeb@C[x, x 1] ~
V: ® L/ Vor ® L. It turns out that the cocycleof the central extension is given by

cW®E wY) =1(uv, pwk(E, ¥). (57)

In case (1)V: ® L/ Vor ® L = L[x, x~1], the loop algebra of., andc is the expected
central extension

C[xmé, xnI//] = mS,m’nK(%', ). (58)

5. Dual comodules, positive energy representations, and smooth representations
5.1. Dual coalgebras and dual comodules

If Aisanalgebra, antl is anA module, then the constructio® A, C), Q(M, C) have
alternative descriptions which make the calculations easy.

Proposition 5.1.
1. P(A,C)=:A*={a: A — C:kera >1, Ianidea)l dim(A/I) < oo}.
2.0M,C)==M*"={u:M — C:keru>W, AN< W, dmM/W) < oo}.

Proof. (1) Observe that sincd /I is finite dimensional, multiplication i /I gives the
linear dual(A/I)" the structure of a coalgebra with the obvious measuring map into
Hom(A, C). Then, sinc€A/I) mapstaP (A, C) by the universal propertg* = lim(A/I)’

< Hom(A, C) mapstoP (A, C). But now observe that the measuring map P (A, C) —
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Hom(A, C) hasits image im*. To see this, considerin P(A, C). LetC be afinite dimen-
sional subcoalgebra a?(A, C) containingc. Then the restriction of the measuring map
7 : C — Hom(A, C) corresponds to an algebra homomorphism A — Hom(C, C),
the last one being a finite dimensional algebra. Ldte the kernel ofr. Sincer : A —
Hom(C, C) factors throughd/J, m(c) : A — C must factor throught/J, andn (c) isin

A* as required.

(2) The argument is exactly parallel to that of (1). O
Remark 5.2.
1. EvidentlyM* becomes a module for the opposite algeldPR under the action
am= Zm(l) (a)m). (59)

(m)

One can ask what representations arise as dual comodules. It is evident that such a
representation V must have the property that every element of V lines in some finite
dimensional submodule of V. Representations which have this property will be called
locally finite

2. More generally, given modules M, N over A, B, respectiv@ly/, N) can be considered
an A°°? module

The ingredients for the applications of interest are an algdbead a representation
of A on a vector spac¥ and a distinguished subalgelBa Considered as an module,
V* = (AV)* is not very interesting, and may in fact be zero. However, consideredas a
module (8 V)* is not only aB module, but also ad module. The property of the subalgebra
B which gives(8 V)* the structure of ast module is as follows.

Definition 5.3. Say B < A is quasi-normalif and only if for everya in A, there exists
ai, ..., a, such that

1 I
BaB=) Ba = ) aB. (60)
1 1

Lemma5.4. Suppose B is quasi-normal in@nd lets : A — A be an anti-automorphism.
Then if M is a representation of, &2(2 M, C) is an A module

Proof. Notice that the action af°P on Hom(M, C) given by
ap(m) = p(@m (61)

coincides with the action a8°P on (8 M)*, whenevey is in (? M)* anda is in B. Prefacing
this action with the anti-automorphisim

a e ju(m) = p(s(a)m) (62)

defines an action oA on Hom(M, C). The claim is that? M)* is fixed by this action.
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Let o be in (BM)* and leta be in A. By Remark 5.2 : M — C vanishes onv,
a B submodule withM /N finite dimensional. The problem is to show that there B a
submodulev, such thatM /N, is finite dimensional an¢z e «)(N,) = 0.

SinceB is quasi-normal, we write

! I

BSa)B=) aiB=) Ba. (63)

1 1
Then, define linear maps
M

o N> M — N aj(n) =ajn+ N, (64)
and let

N; = kerq;, N, = NN;. (65)

Now observe thatv, is a B submodule of\/: considera;bnfor b in B, n in N,. We can
write

1
aib = ijaj (66)
1
so that
1
ai(bn)=aibn+N=ijajn+N. (67)

1

Sincen isin Ny, a;jnisin N for all j, and hence so ;a;n. Thusbnis in the kernel ot;
for all i. Finally check thatV, is contained in ke# e . Forn in N, a e a(n) = a(s(a)n).
Buts(a) is in BSa)B, Sos(a) = lebjaj ands(a)n = lebjajn. Sincen is in kera; for
eachi, a;n isin N for eachi, hences(a)n isin N anda(s(a)n) = 0 as required. O

5.2. Application to totally disconnected groups
Let G be atotally disconnected group (see [3] for a survey of the representation theory of
these objects) with a given compact open subgi#ouand letM be a complex representation
of G, hence a representation@t; (= A) andCK (= B).
Lemma5.5. CK is quasi-normal inrCG.
Proof. Letg be inG. The double cosdfgK is a finite union of either right or left cosets

of K and the left coset representatiigs} may be chosen to be the same as the right coset
representatives. Then

CKgCK =) CKg; = » ¢;CK (68)
1 1

as required. O
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Corollary 5.6. Q(°XM, C) is a representation 0€G which is locally finite as a rep-
resentation ofCK .

Proof. Allthatis neededto meetthe conditions of Lemmab5.4isthe choice of an appropriate
anti-automorphism. Clearly the mafg) = ¢! is a suitable choice.

The representatio®(“X M, C) is almost but not quite the smooth dualdf The rela-
tionship can be described in coalgebraic terms. O

Definition 5.7. If F is a subcoalgebra @f, andD is aC comodule, define the restriction
of D to F to be

FID=1{deD:AdeF®D). (69)

Thusg|D is aC subcomodule and aR comodule.

In particular, the coalgebrB(CK, C) = (CK)* contains as an important subcoalgebra
the vector space with bask”, the set of group homomorphisms K — C. The trivial
homomorphisnt : K — C in particular is inK”. Consider the subcomodule

el (G M. (70)

Proposition 5.8.
1. If K’ is another compact open subgroup of G, th€f M)* = (CX' Mm)*.
2. If K’ < K,andifr, T’ are the corresponding trivial homomorphisntisen

cel CEMy* <cor 1(CK M)*. (71)

3. The unionJuc: |(¢X M)* over all compact open K is the smooth dual af M

Proof. The only statement which is not immediate is the first. Supposekthat K, then
the inclusion induces amagK)* — (CK’)*, and any(CK)* comodule is automatically
a(CK’)* comodule. Moreover, anC K )* comoduleD equipped with a measuring map
D — Hom(M, C) is also a measuring comodule f@K")*. Thus(°X M)* — (CK'M)*.

Less obviouslfCK'M)* — (K M)*. Leta : M — C vanish onN’ which is aCK’
submodule withM /N’ finite dimensional. The aim is to show that there exigtsa CK
submodule withw(N) = 0, andM/N finite dimensional.

We write K'KK’ = Lk; K’ = UK'k;. SinceK andK’ are compact open, this is a finite
union. The argument now is the same as that which established in Lemma 5.5. Define the
maps

M
ki:N - M — v kin'=k,+ N forn’ € N', (72)
and set
N = nkerk;. (73)

The arguments that: (¥ is aCK module, (i) N is contained in keg, and (iii) M/N is
finite dimensional follow the pattern of Lemma 5.4. O
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5.3. Application to loop algebras

Let L be a finite dimensional simple Lie algebra o@and letZ[x, x 1] denote the loop
algebra ofL consisting of Laurent polynomials inwith coefficients inL. A representation
M of L is a projective representation with cocyeld

ExXDWxHm = (Yx)EXD)) + [E Y1 m + cEx’, yx)ym (74)

for all m in M. The representation is said to be of lekéf it is projective with cocycle:
given by

cEx', yxd) = ke (&, ¥)8i —, (75)

wherex (, ) is the Killing form onL.

A projective representation df[x, x 1] corresponds to an ordinary representation of
the central extensiol[x, x 1] @ Cc in the usual way. Thus level representations are
representations in which acts as a multiplication by. In addition, there is an outer
derivation d ofL[x, x~1] given by

dex’ = igx’. (76)

Formthe Lie algebra[x, x " 1]@®Cc®Cd, setting i/, £x'] = i&x, [d, c] = 0. The algebras
of interest are universal enveloping algebras of this Lie algebra and certain subalgebras.
We write

U=U(L[x,x 1 ®Cca®Cd),
Us = U(L[x] ® Cc @ Cd),
U< =U(L[x '] ® Cc o Cd),
U. = U(L[x]x),
U. = U(L[x"Yx7Y). (77)
The isomorphisms as vector spaces
Lix,x Y =Llx YxtoLix] =Lx Yx 1@ L& L[x]x (78)
induce isomorphisms of vector spaces
U=U.®U>=U_.QU(L®Cc®Cd)®U-. (79)

The bracket with/ provides aZ grading (as vector spaces) of all the universal enveloping
algebras described here. With respect to this grading,

U = ®n§0(U<)ny (80)

where(U.), is the set of elements of degreeEach(U..), is finite dimensional. Hence
the subspace

(U<)(n) = @ijin (U<)J (81)

1 See [5] for basic information on the subject.
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is also finite dimensional and

U. = @nfO(U<)(n)' (82)

Lemma 5.9. Us is quasi-normal in U

Proof. This is essentially a consequence of the analogue of the Poincare—Birkhoff—Witt
theorem for universal enveloping algebras. Observe that

(U<)(”) ®U>=U-® (U<)(n)7 U-® (U<)(n) = (U<)(n) Q Us. (83)
The result follows since in U is in some(U <)) ® Us. If {a;} is a basis foU.),), then

UZaUZ = Za,’UZ = ZUZal' (84)
i i

as required.
The anti-automorphism commonly used is that determined by the Lie algebra anti-
automorphism : L[x,x 1] ®Cc® Cd — L[x,x 1] ® Cc® Cd,

sExy=—ex"1, s(e)=¢,  s(d)=—d. O (85)

Proposition 5.10. If M is a U module, then
1. (Y= M)* is a level k representation if M is
2. (Y=M)* is locally finite as al/> module

Proof. (1) This is more or less a direct corollary of Lemma 5.9. Calculate

[Ex)(Wxya — (Yl ) (ExDa — [x, Y1x' + ja](m)
= a[(s(Yx/)(s(Ex") — sExDs(Px!) — s([x, Ylx' T ))m]
= a[((Yx")Ex™) — ExTHWx™) — (W, x]x 77 ))m]
= ale(x/ Ex7)m] = c(s(Px!), sEx))a(m)
= —c(sEx"), s(Ux))a(m) = c(Ex', yx))a(m), (86)

sincec(&x’, Yx/) = K& _jk(x, ¥) = —jKs_j ik (¥, x) = c(¥x—/, Ex7"). This estab-
lishes (1).
For (2) observe that(Us) = U>. The result then follows from Corollary 5.6. O

Definition 4.11. Say a representatialf of U is positive energy it/ acts diagonally with
real eigenvalues and the eigenvalued afre bounded above.

As with the category of smooth representations of totally disconnected groups, so the
category of positive energy representations of a loop algebra admits the existence of a dual.
As the smooth dual of a representation of a totally disconnected group can be identified in
terms of restricted comodules, so the dual positive energy representation of a representation
M can be identified as an appropriate restriction('6fM)*. It remains to identify the
appropriate subcoalgebra @ )*.
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The universal enveloping algebira has an augmentation iddal™ = @,,-.1(U-),. This
generates an ideély of Us:

Uo = U= (U). (87)
A short calculation shows thdfj is in fact a two-sided ideal. Define
pY = im( U= )* — (U=)* (88)
0 (Uo)N =

Sincer) ™/ > pY, define

Po=UPY. (89)

Proposition 5.12.
1. p|(Y=M)* is aU submodule ofV= M)*.
2. If p,|(Y=M)* is generated by a finite set of eigenvectorsfghen itis positive energy

Proof. (1) Check that for in U, g in p,|(Y=M)*, z e ¢ is in Po|(Y=M)*, or equivalently,
for someN, anyu in s(U}'), u e z e g = 0. Using Py = UPY', it can be shown that

pol(V=M)* = 1= M), (90)

Supposey is in P}'|(V= M)* for someN’, thatis,u e g = 0 for allu in s(U{"). If i >0,
andzin (Us)i, thenu e z e g = 0, sincez isin Us ands(Ué"') is anideal ofUs. If i <O,
observe that

s(UYYUs)i < (Us)pys(UY ™). (91)

Thus forz in (Us)i, ¢ in PY'|(V=M)*, u e z ¢ g = O providedN > N’ —i.

(2) We write V =p, [(Y=M)*. Assume thalg;} is a finite generating set for of d
eigenvectors. Sinc¥ is locally finite asU> module,Ux{g;} is a finite dimensional/>
module, we call itD. In particular, the element acts onD, and is diagonalizable of
with finitely many eigenvalues. But then since

V=UD=U_.D, (92)
d acts diagonally oV and the eigenvalues are bounded below. O
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