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Abstract

Measuring comodules are defined and shown to provide a useful generalization of the set of maps
between modules with a broad range of applications. Three applications are described. Connections
on bundles are described in terms of measuring comodules, enabling curvature to be defined under
general algebraic circumstances. Loop algebras are realized via a short exact sequence of measuring
comodules, with the central extension given by the curvature. Finally dual comodules provide a
method of dualizing representations, which when applied to representations of loop algebras yield
positive energy representations, and when applied to representations of totally disconnected groups
leads to the smooth dual. © 2000 Published by Elsevier Science B.V.
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1. Introduction

For some time measuring coalgebras have been employed as sets of generalized maps
between algebras [1]. The purpose of this paper is to introduce measuring comodules which
provide a set of generalized module maps from a moduleM over an algebraA to a module
N over a different algebraB.

The categorical implication of this construction is presented in [4]. This paper presents a
more practical approach not only in the construction of categorical interest, but it also has
wide range of potential applications, three of which are described here.

The first application describes connections on bundles. A connection is that construction
which is required to describe covariant differentiation of a section of a vector bundle. As
such it is amenable to algebraic description, and indeed gives an example of a measuring
comodule. The curvature of a connection can likewise be described as an element of a
measuring comodule.

The second application generalizes an alternative construction of the universal enveloping
algebra of a Lie algebra using measuring coalgebras. That construction proceeds as follows.
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Given a representation of a Lie algebraL as derivations of an algebraA, the universal
enveloping algebraUL arises as the subcoalgebra-subalgebra of the universal measuring
coalgebraP(A,A) generated byL. In an earlier paper quantum group-like objects were
shown to arise by considering subcalgebra-subalgebras ofP(A,A)generated by certain sets
of difference operators [2]. Here, similar sets of difference operators are used to generate
subcomodule-subalgebras of the universal measuring comoduleQ(M,M) for a suitable
A moduleM. The resulting algebras are closely related to loop algebras and their central
extensions. The cocycle defining the central extension arises as the trace of a curvature.

The last application concerns the dual comodule of anAmoduleM,Q(M,C), whereA
is an algebra overC. This comodule itself becomes anA module with a strong finiteness
property: every element is contained in a finite dimensionalA submodule. Two examples
are considered. In the first caseM is a representation of a totally disconnected groupG,
e.g., an algebraic group over thep-adic numbers. The construction of interest concerns the
dual comodule ofM considered as a module for the group algebraA = CK, whereK
is a compact open subgroup ofG. The resulting dual comodule turns out to be not only a
representation ofK, but of the whole ofG. It is closely related to the smooth dual.

In the second example,M is a levelk representation of a loop algebraL[x, x−1] (where
L is a finite dimensional semi-simple Lie algebra). The dual comodule forM considered as
anA = UL[x] module is not only anL[x] module but a levelk representation ofL[x, x−1].
Moreover it contains as a functorially identifiable submodule a positive energy piece. When
M is positive energy, this piece is the dual positive energy levelk representation ofL[x, x−1].

This paper is organised as follows. Section 2 describes measuring coalgebras and comod-
ules. While essentially the constructions are the same as those described in [4], here they are
presented in a simplified algebraic context rather than the more general categorical setting.
Connections are described in Section 3, the association with loop algebras in Section 4, and
finally the two applications of dual comodules in Section 5.

2. Measuring coalgebras and measuring comodules

Although measuring coalgebras (and dual coalgebras in particular) have been around for
a long time, I will develop the theory of measuring coalgebras and measuring comodules
in parallel, as the first serves as an accessible model for the second.

Definition 2.1 (Measuring coalgebras). IfA andB are algebras over a fieldk, ameasuring
coalgebrais a coalgebraC overk with comultiplication

1 : C → C ⊗ C, 1c =
∑
(c)

c(2) ⊗ c(1), (1)

and counitε : C → k together with a linear map, called ameasuring map

f : C → Homk(A,B) (2)

such that
1. φc(aa′) = ∑

(c)φc(2)(a)φc(1)(a
′),
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2. φc(1A) = ε(c)1B
for a, a′ in A, 1A, 1B , the appropriate identity elements. The mapφ is said to measure.

Statements (1) and (2) are equivalent to the statement that the transpose map

φ : A → Homk(C, B) (3)

is an algebra homomorphism, where the multiplication in Homk(C, B) is given by

µ • ν(c) =
∑
(c)

µ(c(2))ν(c(1)) (4)

with identity

1(c) = ε(c)1B. (5)

The following proposition summarizes results about measuring coalgebras described in [4].

Proposition 2.2.
1. Given algebrasA,B, there is a category of measuring coalgebrasC(A,B)whose objects

are measuring coalgebras(C, φ) and whose mapsr : (C, φ) → (C′, φ′) are coalgebra
mapsr : C → C′ such that the following diagram commutes.

2. The subcategory of finite dimensional measuring coalgebras is dense inC(A,B). Es-
sentially, every measuring coalgebra is a limit of finite dimensional subcoalgebras(for
a discussion of density see[6, Chapter 5]).

3. The categoryC(A,B) has a final object, (P (A,B), π) called the universal measuring
coalgebra.

Thus there is a correspondence of sets

Coalgebra maps(C, P (A,B)) ↔ Algebra maps(A,Homk(C, B)) (6)

4. If Ai, i = 1,2,3, are algebras there is a map

m : C(A2, A3)× C(A1, A2) → C(A1, A3)

In particular, P(A,A) is a bialgebra.
5. The universal measuring coalgebraP(A,A) is a bialgebra.

Proof. Full proofs can be found in [4]. However, as the presentation in [4] is highly cate-
gorical and more general than is necessary here, direct proofs of (2) and (3) are indicated
below.

(2) To establish density it is sufficient to show that every elementc of a coalgebraC is
contained in a finite dimensional subcoalgebraC1. As this result is the essential property
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of coalgebra, the proof from Sweedler [9, p. 46] is repeated here. LetC′ = Homk(C, k) be
the dual algebra and consider the action ofC′ onC given by

c′ · c =
∑
(c)

c′(c(2))c(1). (7)

Evidently theC′ moduleV generated byc is finite dimensional, and

C′ → End(V ) (8)

is an algebra homomorphism of cofinite dimensional kernelJ .
Let J⊥ be the subspace ofC on whichJ is identically zero. Finally notice thatJ⊥ →

Hom(C′/J, k) is finite dimensional andc is inJ⊥. A subcoalgebra of a measuring coalgebra
is itself a measuring coalgebra (with the restriction of the measuring map), hence the result.

(3) This depends on two categorical properties of coalgebras.
(a) Arbitrary coproducts exist in the category of coalgebras and coalgebra maps.
(b) Coequalizers also exist in this category.

The construction ofP(A,B) proceeds as follows. Consider the collection{(Cλ, φλ)} of
finite dimensional measuring coalgebras. Form the coproducttλCλ, this is a measuring
coalgebra. Now consider the set{ρ(λ, µ)}of mapsρ(λ, µ) : Cλ → Cµ of finite dimensional
measuring coalgebras. Form the coproducttρ(λ,µ)Cλ, this is also a measuring coalgebra.
There are two maps

α, β : tρ(λ,µ)Cλ → tλCλ (9)

OnCλ, α is just the inclusionCλ → tλCλ, whileβ is the composition ofρ(λ, µ) with the
inclusionCµ → tλCλ.

The claim is that the coequalizerP(A,B) has the desired universal property. If(D,ψ)
is a measuring coalgebra, thenD is the union of finite dimensional subcoalgebrasDν .
Evidently there is a maprν : Dν → P(A,B) and this map is unique. The uniqueness
of rν guarantees the mapρ : D → P(A,B) given byρ(d) = rν(d) if d in Dν is well
defined. �

Example 2.3.
1. P(A,B) is intended to generalize the set of algebra homomorphisms fromA to B,

and so it does. LetC0 = kg be the one-dimensional coalgebra with1g = g ⊗ g,
ε(g) = 1. Then a mapφ : C0 → Homk(A,B) measures if and only ifφ(g) is an
algebra homomorphism. ThusP(A,B) contains all algebra homomorphisms.

2. Let C1 = kg ⊗ kγ , g as above, and let1γ = g ⊗ γ + γ ⊗ g, ε(γ ) = 0. Then
φ : C1 → Homk(A,B) measures if and only ifφ(g) is an algebra homomorphism and
φ(γ ) is a derivation with respect toφ(g). That is,

φ(γ )(aa′) = φ(γ )(a)φ(g)(a′)+ φ(g)(a)φ(γ )(a′). (10)

3. More generally ifL is a Lie algebra overk, thenL ⊕ C0 can be given the structure of
coalgebra with comultiplication1γ = γ ⊗g+g⊗γ andε(γ ) = 0 forγ inL. Suppose

φ : L⊕ C0 → Homk(A,A) (11)
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is a measuring map such that

φ[ν, γ ] = [φν, φγ ], φ(g) = Id (12)

for ν, γ in L. By the universal property ofP(A,A), there is a map of measuring coal-
gebras

ρ : L⊕ C0 → P(A,A) (13)

However,P(A,A) is an algebra, and in fact the following is true.

Proposition 2.4. If the mapφ is injective on L, the subalgebra ofP(A,A) generated by
the image ofρ is isomorphic to the universal enveloping algebra UL.

The proof follows from the universal property ofP(A,A) and facts about bialgebras [2].
In [2] I considered subalgebras ofP(A,A) generated by measuring coalgebrasL ⊕ CK,
whereK is a group,CK has the usual comultiplication1k = k⊗k for k inK, and elements
of L have a slightly skew version of the usual comultiplication for derivations

1E = E ⊗ k + k−1 ⊗ E, (14)

which is characteristic of difference operators. These objects resemble quantum groups. The
construction in Section 4 of this paper uses the same procedure to construct subalgebras of
the universal measuring comodule (defined below), which are related to central extensions
of loop algebras.

Definition 2.5 (Measuring comodules). LetM be anA module and letN be aB module
(all modules and algebras are vector spaces overk). When it is necessary to emphasize
the algebra over whichM andN are modules, writeAM, BN . Let (C, φ) be a measuring
coalgebra inC(A,B). Recall that acomoduleoverC is a vector space with a comultiplication

1 : D → C ⊗D, 1(d) =
∑
(d)

d(1) ⊗ d(0). (15)

In addition, I will assume that(ε ⊗ 1)1 = 1. When it is necessary to keep the track of the
coalgebra over whichD is a comodule, we writeCD. A k-linear map

ψ : D → Homk(M,N) (16)

measuresif

ψ(am) =
∑
(d)

φd(1)(a)ψd(0)(m). (17)

The pair(D,ψ) is called a measuring comodule, andψ is called a measuring map.
Equivalentlyψ measures if and only if the corresponding transpose map

ψ : M → Homk(D,N) (18)

is a map ofA modules, where theA module structure on Homk(D,N) is given by

a • β(d) =
∑
(d)

φd(1)(a)βd(0). (19)
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Again, the results from Hyland and Batchelor [4] are summarized in the following
proposition.

Proposition 2.6.
1. Given a measuring coalgebra C inC(A,B) there is a categoryCD(M,N), whose

objects are measuring comodules(D,ψ) and whose mapsσ : (D,ψ) → (D′, ψ ′) are
comodule mapsσ : D → D′ such that the following diagram commutes.

2. The subcategory ofCD(M,N) whose objects are the finite dimensional measuring co-
modules is a dense subcategory ofCD(M,N).

3. The categoryCD(M,N) has a final object, CQ(M,N). This has the property that there
is a correspondence

C − −comodule maps(D,C Q(M,N)) ↔ A− −module maps(M,Hom(D,N))

(20)

4. If Mi are modules over algebrasAi, i = 1,2,3, and if C, C′ are in C(A1, A2),
C(A2, A3), respectively, then there is a map

CD(M2,M3)×C′ D(M1,M2)
m→m(C×C′)D(M1,M3) (21)

In particular, CQ(M,M) is a comodule algebra forC → Hom(A,A) a measuring
coalgebra, M is an A module.

5. If A = B andM = N , thenCQ(M,N) is a comodule algebra.

Proof. (2) Again the important step is to show that ifD is aC comodule, then eachd inD
is contained in a finite dimensional subcomodule.

Define an action• of C′, the linear dual ofC onD via

a • d =
∑
(d)

a(d(1))d(0). (22)

Choose an elementd of d0, and letD0 = C′ • d0. EvidentlyD0 is a finite dimensionalC′

module andd0 = 1 • d0 is inD0.
The full linear dualD′ (of D) is also aC′ module with the action given explicitly by

a ∗ d(d) =
∑
(d)

a(d(1))d(d(0)). (23)

The subsetD⊥
0 = {d ∈ D′ : d(D0) = 0} is a submodule, andD′

0 = D′/D⊥
0 . But (D⊥

0 )
⊥ is

then a subcomodule ofD, andD is contained in(D⊥
0 )

⊥. Since(D⊥
0 )

⊥ includes in(D′/D⊥
0 )

′,
(D⊥

0 )
⊥ must be a finite dimensional comodule as required. The proofs of (1) and (3) are

identical in format to the corresponding statements for measuring coalgebras. �
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Example 2.7.
1. LetC0 = kg as in Example 2.3(1) and suppose thatφ : C → Homk(A,B) measures,

so thatφ(g) is an algebra homomorphism. LetD be the comodule withD = kd and
comultiplication1d = g ⊗ d. Letψ : D → Homk(M,N) be a linear map. Recall that
the pullback ofN , φ(g)∗N is anA module. Thenψ measures if and only if

ψ(d) : M → φ(g)∗N (24)

is a map ofA modules.
2. If A = B and ifC contains the measuring comoduleC0 with φ(g) = 1, the measuring

comoduleCQ(M,N) contains the vector spaceH of all genuineA module maps from
M toN as follows.

Any vector space, e.g.H , is trivially a C comodule with comultiplication1h =
g⊗h. The inclusionψ : H → Homk(M,N) is then a measuring map. By the universal
property there is a unique map of measuring comodulesρ : H →C Q(M,N). Sinceψ
is an inclusion, so mustρ be.

3. Any algebra can be considered as a module over itself acting by left multiplication. If
C → Hom(A,B) is a measuring coalgebra, by consideringC as a comodule over itself,
C → Hom(A,B) is also a measuring comodule.

4. For an elementa of an algebraA, let ιa denote the inner derivation

ιa(b) = [a, b] = ab− ba. (25)

Let IA denote the Lie algebra of inner derivations ofA. As in Example 2.3(3), letC be
the measuring coalgebraC = IA ⊕ C0, C → Homk(A,A). Now put aC comodule
structure onA,

1(a) = g ⊗ a + ιa ⊗ 1. (26)

Now letM be anA module. With the comodule structure above, the inclusionA →
Homk(M,M) sendinga to left multiplication bya givesA, the structure of a mea-
suring comodule. This construction generalizes the observation that for modules over
commutative rings, left multiplication is a module map.

Remark 2.8.
1. If τ : (C, f ) → (C′, f ′) is a map of measuring coalgebras, in particular,τ is a comodule

map, so thatCQ(M,N) can be considered as aC′ comodule. Sinceτ is a map of
measuring coalgebrasCQ(M,N) is in fact inC′D(M,N), and hence by the universal
property there is a unique mapCQ(M,N) →C′ Q(M,N). All universal measuring
comodulesCQ(M,N) thus map toP(A,B)Q(M,N), which will often be denoted as
Q(M,N).

2. The constructionQ(M,N) serves as the set of “module maps from an A module M to a
B module N” even when A is not the same as B. The paper[4] arose from the desire to
put this curiosity into a sound categorical context.
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3. Connections

Given an algebraA of functions, and a setV of derivations ofA (vector fields), a con-
nection is that which is needed to define covariant differentiation by elements ofV on a
moduleM (e.g., sections of a bundle) overA. This is a completely algebraic statement and
as such lends itself to restatement in terms of measuring comodules.

Definition 3.1 (Loose connections). LetA be an algebra and letM be a module overA. Let
C be a measuring coalgebra, and letD be a comodule overC which is also anA module.
A loose connection is a measuring map

∇ : D → Homk(M,M), (27)

which additionally satisfies the requirement that∇ be a map ofAmodules in the sense that

∇(aξ)(m) = a∇ξ(m). (28)

Example 3.2.
1. Connections on a vector bundle. LetA = C∞(Y ), whereY is a smooth manifold and

letV be the Lie algebra of vector fields onY and letC = V ⊕ C1. LetD = V ⊕A with
the comultiplication

1 : D → C ⊗D, 1(ψ) = 1 ⊗ ψ + ψ ⊗ 1, ψ ∈ V,
1(a) = 1 ⊗ a + ιa ⊗ 1, a ∈ A. (29)

Notice thatD is anA module. LetE be a vector bundle overY and let0(Y,E) denote
the smooth sections ofE overY . ThusM = 0(Y,E) is a module forA. In this setting,
loose connections are precisely Koszul connections (see [8]).

2. Connections on a principle bundle(see[7]). LetY be a manifold and letP be a principleG
bundle overY . LetM = C∞(P ). Observe thatC∞(Y ) includes inM as those functions
which are constant on the fibres ofP , henceM is aC∞(Y ) module. In addition, the
group algebraRG acts onM via right translation. The action ofRG commutes with the
action ofC∞(Y ).

LetA = C∞(Y )⊗ RG. Let V be the Lie algebra of vector fields onY . Observe that
the coalgebraC above becomes a measuring coalgebra with measuring map

φ : C→Hom(C∞(Y )⊗ RG,C∞(Y )⊗ RG), φ(ψ)f ⊗ g=ψf ⊗ g. (30)

Let D be the comodule of Example 3.2(1). This is aC∞(Y ) ⊗ RG module with the
trivial action ofG onC∞(Y ) andV . Also notice thatD containsC as a subcomodule
(with its usual coproduct). A loose connection

∇ : D → Hom(C∞(P ), C∞(P )) (31)

in this setting corresponds to a connection on the principle bundle if and only if addi-
tionally ∇ restricted to the subspaceC defines a measuring coalgebra

∇ : C → Hom(C∞(P ), C∞(P )) (32)
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3.1. Curvature

Curvature can be defined for any measuring comodule equipped with Lie bracket, in
particular for loose connections. Recall that any measuring comodule,D in particular,
comes with a map of measuring comodules

ρ : D → Q(M,M) (33)

Recall thatQ(M,M) is a comodule algebra. IfD contains a subspaceV on which a Lie
bracket is given forξ, ψ in V , we write

�(ξ,ψ) = ρ(ξ)ρ(ψ)− ρ(ψ)ρ(ξ)− ρ([ξ, ψ ]) (34)

This map

� : V ⊗ V → Q(M,M) (35)

is thecurvatureof the loose connection∇ onV .

Remark 3.3. In all classical cases, the coalgebra C is alwaysV ⊕ C1, the comodule D is
alwaysV ⊕A, where V is the Lie algebra of derivations of A, and one is only interested in the
restriction of∇ to V. There is no harm, however, in allowing this greater generality. In the
next section a very different example demonstrates the advantages of being broad minded.

This section concludes with a result which is well known for conventional connections.

Proposition 3.4. If V is a set of primitive elements, i.e., with comultiplication

1x = ξ ⊗ 1 + 1 ⊗ ξ, (36)

then�(ξ,ψ) determines a module map

�(ξ,ψ) : M → M (37)

Proof. Direct calculation (observing thatQ(M,M) is a comodule algebra, i.e., that multi-
plication preserves the comodule structure) shows that

1�(ξ,ψ) = 1 ⊗�(ξ,ψ). (38)

But this is exactly the statement that�(ξ,ψ) is a module map. �

4. Generalization of universal enveloping algebras using measuring comodules

In Proposition 2.4, the universal enveloping algebra is constructed as a subalgebra of the
universal measuring coalgebra generated by a Lie algebra of derivations. The original Lie
algebra can be identified as the subspace of primitive elements.

This construction can be generalized, replacing primitive elements (derivations) with
elementsE of a measuring coalgebra with the asymmetric comultiplication1E = E ⊗
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K + K−1 ⊗ E, whereK is an (invertible) group-like element. The algebras generated by
suchE andK resemble quantum groups, and were the subject of [2].

This construction is now generalized again, replacing the universal measuring coalgebra
with the universal measuring comodule. The resulting algebra has, as the analogue of its
Lie algebra of primitive elements, a Lie algebra related to the central extensions of loop
algebras. The central term arises as the trace of the curvature.

Construction 4.1. LetAbe an algebra and letM be anAmodule. LetP0 be a subcoalgebra-
subalgebra ofP(A,A), and define

V0 = {v ∈ Q(M,M) : 1v ∈ P0 ⊗Q(M,M)},
V = {v ∈ Q(M,M) : 1v ∈ P(A,A)⊗ 1 + 1 ⊗Q(M,M)+ P0 ⊗Q(M,M)}.

(39)

Evidently A is contained inV . The subcomoduleV is the generalization of primitive
elements referred above. Suppose a “trace”

τ : V0 → C (40)

is given. LetK be the kernel ofτ . Define

V0τ = {v ∈ V0 : [K, v] ≤ K}, Vτ = {v ∈ V : [V0τ , v] ≤ K}. (41)

Observe thatVτ is not an algebra, but the Jacobi identity guarantees that it is closed under
Lie bracket.V0 is a subalgebra ofQ(M,M) and henceV0τ is a Lie subalgebra. It is not
hard to check that there is a short exact sequence of Lie algebras

0 → V0τ

K
→ Vτ

K
→ Vτ

V0τ
→ 0. (42)

Moreover,Vτ /K is a central extension ofVτ /V0τ .
Suppose nowµ : Vτ /V0τ → Vτ is any linear section of the projectionVτ → Vτ /V0τ .

The imageµ(Vτ /V0τ ) inherits a Lie bracket fromVτ /V0τ : hence the associated curvature
�µ takes values inV0τ . While the�µ may depend on the sectionµ, the trace of the curvature
does not. In factVτ /K is the central extension ofVτ /V0τ with cocyclec defined by

c(v,w) = τ(�µ(µv,µw)) (43)

for v,w in Vτ /V0. Familiar examples arise from looking at particular subspaces ofV .

Example 4.2.
1. LetA = M = C[x]. Let

P0 = {p ∈ P(C[x], C) : p(xn) = 0 for almost alln}. (44)

Explicitly P0 has basis{βj } with comultiplication and measuring map given by

1βj =
∑
k=0

βk ⊗ βj−k, φ(βj ) = j !
d

dx

∣∣∣∣
0
. (45)
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Define a traceτ onV0,

τ(v) =
∞∑
j=0

βj (v(x
j )). (46)

To see this well defined, observe that forv in V0

v(xn) =
∑
(v)

v(1)(x
n)v(0)(1). (47)

Thusβj (v(xn)) = 0 for greater than the greatest degree of thev(0)(1), and the sum
definingτ is always a finite sum.

This example contains two very well-known examples as Lie subalgebras. First con-
siderC[α−1]. This can be given the structure of a coalgebra with

1(α−i ) = α−i ⊗ 1 +
i−1∑
k=0

βk ⊗ α−i+k, i > 0, ε(αi) = δi,0. (48)

Define a mapφ : C[α−1] → Hom(C[x],C[x]) via

φ(αi)xn =
{
xi+n, i + n ≥ 0,
0 otherwise.

(49)

It is routine, if surprising, to verify that this map measures. NowC[α, α−1] can be
considered as a comodule overC[α−1] ⊕ P0 with comultiplication given by

1αi = 1 ⊗ αi (50)

for i > 0, otherwise as above. Clearly the measuring mapφ above extends to all of
C[α, α−1]. It is not hard to check that the image ofC[α, α−1] lies in Vτ . The image of
C[α, α−1] in Vτ /K is the familiar central extension of the abelian Lie algebraC[α, α−1]
with cocycle

c(αk, αj ) = kδk,−j . (51)

2. With P0 andτ as before, letT be the vector space with basis{Ti, i ∈ Z}, and put a
comodule structure onT via

1(Ti) = Ti ⊗ 1 + 1 ⊗ Ti +
∑
i+k<0

kβk ⊗ αk+i + βk ⊗ Tk+i . (52)

Observe thatT ⊕ P0 ⊕ C[α−1] is in fact a coalgebra if the counit onT is defined to be
identically zero. Extendingφ of the previous example via

φ(Ti)(x
n) =

{
xi+n, i + n ≥ 0,
0 otherwise

(53)

givesT ⊕P0 ⊕ C[α−1], the structure of a measuring coalgebra, and hence a measuring
comodule. Again the image lies inVτ . The image ofT in Vτ /V0τ is isomorphic to the
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Lie algebra of derivations ofC[x, x−1], and its image inVτ /K is the variant of the
Virasoro algebra with cocycle

c(Tm, Tn) = 1
6(m

3 −m)δm,−n. (54)

3. Return now to a general algebraA, and suppose thatM = A, and suppose also thatτ
is given so thatK, Vτ andV0τ are as described in Construction 4.1. LetL be a finite
dimensional (semi-simple) Lie algebra, which is faithfully represented byρ : L →
End(W). LetM(W) = A ⊗ W . Then the identification of Hom(M(W),M(W)) with
Hom(A,A)⊗ Hom(W,W) provides a map

φ ⊗ ρ : V ⊗ L → Hom(M(W),M(W)) (55)

which measures. Moreover,V ⊗ L, is closed under Lie bracket, as isV0 ⊗ L.
If κ is the Killing form onL thenτ ⊗ κ is well defined onV0 ⊗ L, andτ ⊗ κ([Vτ ⊗

L,V0τ ⊗L]) = 0. LetK(L) be the kernel ofτ ⊗κ. There is then a short exact sequence
of Lie algebras

0 → V0τ ⊗ L

K(L)
→ Vτ ⊗ L

K(L)
→ Vτ ⊗ L

V0τ ⊗ L
→ 0 (56)

The Lie algebraVτ⊗L/K(L) is the central extension of the loop algebraL⊗C[x, x−1] ≈
Vτ ⊗ L/V0τ ⊗ L. It turns out that the cocyclec of the central extension is given by

c(v ⊗ ξ,w ⊗ ψ) = τ�(µv,µw)κ(ξ, ψ). (57)

In case (1),Vτ ⊗ L/V0τ ⊗ L = L[x, x−1], the loop algebra ofL, andc is the expected
central extension

c[xmξ, xnψ ] = mδ−m,nκ(ξ, ψ). (58)

5. Dual comodules, positive energy representations, and smooth representations

5.1. Dual coalgebras and dual comodules

If A is an algebra, andM is anAmodule, then the constructionsP(A,C),Q(M,C) have
alternative descriptions which make the calculations easy.

Proposition 5.1.
1. P(A,C) =: A∗ = {α : A → C : kerα ≥ I, I an ideal, dim(A/I) < ∞}.
2. Q(M,C) =: M∗ = {µ : M → C : kerµ ≥ W, AW≤ W, dim(M/W) < ∞}.

Proof. (1) Observe that sinceA/I is finite dimensional, multiplication inA/I gives the
linear dual(A/I)′ the structure of a coalgebra with the obvious measuring map into
Hom(A,C). Then, since(A/I)′ maps toP(A,C)by the universal property,A∗ = lim(A/I)′

≤ Hom(A,C)maps toP(A,C). But now observe that the measuring mapπ : P(A,C) →
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Hom(A,C) has its image inA∗. To see this, considerc in P(A,C). LetC be a finite dimen-
sional subcoalgebra ofP(A,C) containingc. Then the restriction of the measuring map
π : C → Hom(A,C) corresponds to an algebra homomorphismπ : A → Hom(C,C),
the last one being a finite dimensional algebra. LetJ be the kernel ofπ . Sinceπ : A →
Hom(C,C) factors throughA/J , π(c) : A → C must factor throughA/J , andπ(c) is in
A∗ as required.

(2) The argument is exactly parallel to that of (1). �

Remark 5.2.
1. EvidentlyM∗ becomes a module for the opposite algebraAop under the action

am=
∑
(m)

m(1)(a)m(0). (59)

One can ask what representations arise as dual comodules. It is evident that such a
representation V must have the property that every element of V lines in some finite
dimensional submodule of V. Representations which have this property will be called
locally finite.

2. More generally, given modules M, N over A, B, respectively,Q(M,N) can be considered
anAop module.

The ingredients for the applications of interest are an algebraA and a representation
of A on a vector spaceV and a distinguished subalgebraB. Considered as anA module,
V ∗ = (AV )∗ is not very interesting, and may in fact be zero. However, considered as aB

module,(BV )∗ is not only aBmodule, but also anAmodule. The property of the subalgebra
B which gives(BV )∗ the structure of anA module is as follows.

Definition 5.3. SayB ≤ A is quasi-normalif and only if for everya in A, there exists
a1, . . . , an such that

BaB=
l∑
1

Bai =
l∑
1

aiB. (60)

Lemma 5.4. Suppose B is quasi-normal in A, and lets : A → A be an anti-automorphism.
Then if M is a representation of A,Q(BM,C) is an A module.

Proof. Notice that the action ofAop on Hom(M,C) given by

aµ(m) = µ(am) (61)

coincides with the action ofBop on(BM)∗, wheneverµ is in (BM)∗ anda is inB. Prefacing
this action with the anti-automorphisms,

a • µ(m) = µ(s(a)m) (62)

defines an action ofA on Hom(M,C). The claim is that(BM)∗ is fixed by this action.
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Let α be in (BM)∗ and leta be inA. By Remark 5.2,α : M → C vanishes onN ,
a B submodule withM/N finite dimensional. The problem is to show that there is aB

submoduleNa such thatM/Na is finite dimensional and(a • α)(Na) = 0.
SinceB is quasi-normal, we write

Bs(a)B =
l∑
1

aiB =
l∑
1

Bai . (63)

Then, define linear maps

αi : N → M → M

N
, αi(n) = ain+N, (64)

and let

Ni = kerαi, Na = ∩Ni. (65)

Now observe thatNa is aB submodule ofM: consideraibn for b in B, n in Na . We can
write

aib =
l∑
1

bjaj (66)

so that

αi(bn) = aibn+N =
l∑
1

bjajn+N. (67)

Sincen is inNa , ajn is inN for all j , and hence so isbjajn. Thusbn is in the kernel ofai
for all i. Finally check thatNa is contained in kera • α. Forn in Na, a • α(n) = α(s(a)n).
But s(a) is in Bs(a)B, sos(a) = ∑l

1bjaj ands(a)n = ∑l
1bjajn. Sincen is in kerai for

eachi, ain is inN for eachi, hences(a)n is inN andα(s(a)n) = 0 as required. �

5.2. Application to totally disconnected groups

LetG be a totally disconnected group (see [3] for a survey of the representation theory of
these objects) with a given compact open subgroupK, and letM be a complex representation
of G, hence a representation ofCG(= A) andCK(= B).

Lemma 5.5. CK is quasi-normal inCG.

Proof. Let g be inG. The double cosetKgK is a finite union of either right or left cosets
of K and the left coset representatives{gi} may be chosen to be the same as the right coset
representatives. Then

CKgCK =
n∑
1

CKgj =
n∑
1

gjCK (68)

as required. �
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Corollary 5.6. Q(CKM,C) is a representation ofCG which is locally finite as a rep-
resentation ofCK.

Proof. All that is needed to meet the conditions of Lemma 5.4 is the choice of an appropriate
anti-automorphism. Clearly the maps(g) = g−1 is a suitable choice.

The representationQ(CKM,C) is almost but not quite the smooth dual ofM. The rela-
tionship can be described in coalgebraic terms. �

Definition 5.7. If F is a subcoalgebra ofC, andD is aC comodule, define the restriction
of D to F to be

F |D = {d ∈ D : 1d ∈ F ⊗D}. (69)

ThusF |D is aC subcomodule and anF comodule.
In particular, the coalgebraP(CK,C) = (CK)∗ contains as an important subcoalgebra

the vector space with basisK∧, the set of group homomorphismsρ : K → C. The trivial
homomorphismτ : K → C in particular is inK∧. Consider the subcomodule

Cτ |(CKM). (70)

Proposition 5.8.
1. If K ′ is another compact open subgroup of G, then(CKM)∗ = (CK

′
M)∗.

2. If K ′ ≤ K, and if τ , τ ′ are the corresponding trivial homomorphisms, then

Cτ |(CKM)∗ ≤Cτ ′ |(CK ′
M)∗. (71)

3. The union∪Cτ |(CKM)∗ over all compact open K is the smooth dual of M.

Proof. The only statement which is not immediate is the first. Suppose thatK ′ ≤ K, then
the inclusion induces a map(CK)∗ → (CK ′)∗, and any(CK)∗ comodule is automatically
a(CK ′)∗ comodule. Moreover, any(CK)∗ comoduleD equipped with a measuring mapρ :
D → Hom(M,C) is also a measuring comodule for(CK ′)∗. Thus(CKM)∗ → (CK ′M)∗.

Less obviously(CK ′M)∗ → (CKM)∗. Let α : M → C vanish onN ′ which is aCK ′

submodule withM/N ′ finite dimensional. The aim is to show that there existsN , a CK
submodule withα(N) = 0, andM/N finite dimensional.

We writeK ′KK′ = tkiK ′ = tK ′ki . SinceK andK ′ are compact open, this is a finite
union. The argument now is the same as that which established in Lemma 5.5. Define the
maps

ki : N ′ → M → M

N ′ , kin
′ = k′

n +N ′ for n′ ∈ N ′, (72)

and set

N = ∩kerki . (73)

The arguments that: (i)N is aCK module, (ii)N is contained in kerα, and (iii)M/N is
finite dimensional follow the pattern of Lemma 5.4. �
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5.3. Application to loop algebras1

LetL be a finite dimensional simple Lie algebra overC and letL[x, x−1] denote the loop
algebra ofL consisting of Laurent polynomials inx with coefficients inL. A representation
M of L is a projective representation with cocyclec if

(ξxi)(ψxj )m = ((ψxj )(ξxi))+ [ξ, ψ ]xi+jm+ c(ξxi, ψxj )m (74)

for all m in M. The representation is said to be of levelk if it is projective with cocyclec
given by

c(ξxi, ψxj ) = ikκ(ξ, ψ)δi,−j , (75)

whereκ(, ) is the Killing form onL.
A projective representation ofL[x, x−1] corresponds to an ordinary representation of

the central extensionL[x, x−1] ⊕ Cc in the usual way. Thus levelκ representations are
representations in whichc acts as a multiplication byκ. In addition, there is an outer
derivation d ofL[x, x−1] given by

dξxi = iξxi . (76)

Form the Lie algebraL[x, x−1]⊕Cc⊕Cd, setting [d, ξxi ] = iξxi , [d, c] = 0. The algebras
of interest are universal enveloping algebras of this Lie algebra and certain subalgebras.
We write

U = U(L[x, x−1] ⊕ Cc ⊕ Cd),

U≥ = U(L[x] ⊕ Cc ⊕ Cd),

U≤ = U(L[x−1] ⊕ Cc ⊕ Cd),

U> = U(L[x]x),

U< = U(L[x−1]x−1). (77)

The isomorphisms as vector spaces

L[x, x−1] = L[x−1]x−1 ⊕ L[x] = L[x−1]x−1 ⊕ L⊕ L[x]x (78)

induce isomorphisms of vector spaces

U = U< ⊗ U≥ = U< ⊗ U(L⊕ Cc ⊕ Cd)⊗ U>. (79)

The bracket withd provides aZ grading (as vector spaces) of all the universal enveloping
algebras described here. With respect to this grading,

U< = ⊕n≤0(U<)n, (80)

where(U<)n is the set of elements of degreen. Each(U<)n is finite dimensional. Hence
the subspace

(U<)(n) = ⊕0≤j≤n(U<)j (81)

1 See [5] for basic information on the subject.



M. Batchelor / Journal of Geometry and Physics 36 (2000) 251–269 267

is also finite dimensional and

U< = ⊕n≤0(U<)(n). (82)

Lemma 5.9. U≥ is quasi-normal in U.

Proof. This is essentially a consequence of the analogue of the Poincare–Birkhoff–Witt
theorem for universal enveloping algebras. Observe that

(U<)(n) ⊗ U≥ = U≥ ⊗ (U<)(n), U≥ ⊗ (U<)(n) = (U<)(n) ⊗ U≥. (83)

The result follows sincea in U is in some(U<)(n) ⊗U≥. If {ai} is a basis for(U<)(n), then

U≥aU≥ =
∑
i

aiU≥ =
∑
i

U≥ai (84)

as required.
The anti-automorphism commonly used is that determined by the Lie algebra anti-

automorphisms : L[x, x−1] ⊕ Cc ⊕ Cd → L[x, x−1] ⊕ Cc ⊕ Cd,

s(ξxi) = −ξx−i , s(c) = c, s(d) = −d. � (85)

Proposition 5.10. If M is a U module, then
1. (U≥M)∗ is a level k representation if M is,
2. (U≥M)∗ is locally finite as aU≥ module.

Proof. (1) This is more or less a direct corollary of Lemma 5.9. Calculate

[(ξxi)(ψxj )α − (ψxj )(ξxi)α − [x,ψ ]xi + jα](m)

= α[(s(ψxj )(s(ξxi)− s(ξxi)s(ψxj )− s([x,ψ ]xi+j ))m]

= α[((ψx−j )(ξx−i )− (ξx−i )(ψx−j )− ([ψ, x]x−i−j ))m]

= α[c(ψx−j , ξx−i )m] = c(s(ψxj ), s(ξxi))α(m)

= −c(s(ξxi), s(ψxj ))α(m) = c(ξxi, ψxj )α(m), (86)

sincec(ξxi, ψxj ) = ikδi,−j κ(x, ψ) = −jkδ−j,iκ(ψ, x) = c(ψx−j , ξx−i ). This estab-
lishes (1).

For (2) observe thats(U≥) = U≥. The result then follows from Corollary 5.6. �

Definition 4.11. Say a representationM of U is positive energy ifd acts diagonally with
real eigenvalues and the eigenvalues ofd are bounded above.

As with the category of smooth representations of totally disconnected groups, so the
category of positive energy representations of a loop algebra admits the existence of a dual.
As the smooth dual of a representation of a totally disconnected group can be identified in
terms of restricted comodules, so the dual positive energy representation of a representation
M can be identified as an appropriate restriction of(U≥M)∗. It remains to identify the
appropriate subcoalgebra of(U≥)∗.
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The universal enveloping algebraU> has an augmentation idealU+
> = ⊕n>1(U>)n. This

generates an idealU0 of U≥:

U0 = U≥(U+
> ). (87)

A short calculation shows thatU0 is in fact a two-sided ideal. Define

PN0 = im

(
U≥
(U0)N

)∗
→ (U≥)∗ (88)

SincePN+j
0 ≥ PN0 , define

P0 = ∪PN0 . (89)

Proposition 5.12.
1. P0|(U≥M)∗ is aU submodule of(U≥M)∗.
2. If P0|(U≥M)∗ is generated by a finite set of eigenvectors ford, then it is positive energy.

Proof. (1) Check that forz in U , q in P0|(U≥M)∗, z • q is in P0|(U≥M)∗, or equivalently,
for someN , anyu in s(UN0 ), u • z • q = 0. UsingP0 = ∪PN0 , it can be shown that

P0|(U≥M)∗ =∪PN0 |(U≥M)∗. (90)

Suppose,q is in PN
′

0 |(U≥M)∗ for someN ′, that is,u • q = 0 for all u in s(UN
′

0 ). If i ≥ 0,

andz in (U≥)i, thenu • z • q = 0, sincez is inU≥ ands(UN
′

0 ) is an ideal ofU≥. If i < 0,
observe that

s(UN0 )(U≥)i ≤ (U≥)(i)s(UN+i
0 ). (91)

Thus forz in (U≥)i , q in PN
′

0 |(U≥M)∗, u • z • q = 0 providedN > N ′ − i.
(2) We writeV =P0 |(U≥M)∗. Assume that{qi} is a finite generating set forV of d

eigenvectors. SinceV is locally finite asU≥ module,U≥{qi} is a finite dimensionalU≥
module, we call itD. In particular, the elementd acts onD, and is diagonalizable onD
with finitely many eigenvalues. But then since

V = UD = U<D, (92)

d acts diagonally onV and the eigenvalues are bounded below. �
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